Thursday, November 8, 2012

Glowing Titan in the Dark


Figure : This set of images from NASA's Cassini spacecraft shows Saturn's moon Titan glowing in the dark. Titan was behind Saturn at the time, in eclipse from the sun. The image on the left is a calibrated, but unprocessed image from Cassini's imaging camera. The image on the right was processed to exclude reflected light off Saturn, and it is clear that even where Titan did not receive any Saturnshine, it is still emitting light. Some light appears to be emanating from high in the atmosphere (noted by the outer dashed line at about 625 miles [1,000 kilometers] in altitude). But more surprisingly, most of it is diffusing up from lower down in the moon's haze, from about 190 miles (300km) above the surface. //Credit: NASA/JPL-Caltech/SSI

By Cassini Imaging Central Lab, Boulder, Colorado, Jet Propulsion Laboratory, 
Pasadena, California

Published: November 6, 2012
A literal shot in the dark by imaging cameras on NASA’s Cassini spacecraft has yielded an image of a visible glow from Titan, emanating not just from the top of Titan’s atmosphere, but also from deep in the atmosphere through the moon’s haze. A person in a balloon in Titan’s haze layer wouldn’t see the glow because it’s too faint — something like a millionth of a watt. Scientists were able to detect it with Cassini because the spacecraft’s cameras are able to take long-exposure images.

“It turns out that Titan glows in the dark, though very dimly,” said Robert West at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California. “It’s a little like a neon sign, where electrons generated by electrical power bang into neon atoms and cause them to glow. Here we’re looking at light emitted when charged particles bang into nitrogen molecules in Titan’s atmosphere.”

Scientists are interested in studying the input of energy from the Sun and charged particles into Titan’s atmosphere because it is at the heart of the natural organic chemistry factory that exists in Titan’s atmosphere.

“Scientists want to know what galvanizes the chemical reactions forming the heavy molecules that develop into Titan’s thick haze of organic chemicals,” said Linda Spilker, also from JPL. “This kind of work helps us understand what kind of organic chemistry could have existed on an early Earth.” The light, known as airglow, is produced when atoms and molecules are excited by ultraviolet sunlight or electrically charged particles. Cassini scientists already have seen an airglow from Titan’s nitrogen molecules caused by X-rays and ultraviolet radiation from the Sun when Titan was illuminated by our star. During 2009, Titan passed through Saturn’s shadow, offering a unique opportunity for Cassini instruments to observe any luminescence from Titan while in darkness. Cassini’s imaging cameras could see in very dim light by using exposure times of 560 seconds.

Scientists expected to see a glow in the high atmosphere (above 400 miles [700 kilometers] in altitude) where charged particles from the magnetic bubble around Saturn strip electrons off atmospheric molecules at Titan. Although an extremely weak emission was seen in that region, they were surprised to see Titan’s dark face glow in visible wavelengths of light from deeper in the atmosphere (at about 190 miles [300km] above the surface), as though illuminated by moonshine from nearby satellites.

The scientists took into account sunlight reflected off Saturn. There was still a glow from the part of Titan that was dark. The luminescence was diffusing up from too deep for charged particles from the Sun to be exciting atmospheric particles. The area also was not affected by the shooting of charged particles into the magnetic fields, which is what causes aurorae.

Scientists’ best guess is that the glow is being caused by deeper-penetrating cosmic rays or by light emitted due to some kind of chemical reaction deep in the atmosphere.

“This is exciting because we’ve never seen this at Titan before,” West said. “It tells us that we don’t know all there is to know about Titan and makes it even more mysterious.”

Scientists have previously reported that the night side of Venus’ atmosphere also produces a glow, called the ashen light. Some have suggested that lightning on Venus is responsible, although that explanation is not universally accepted. While Cassini’s radio-wave instrument has detected lightning at Saturn, it has not detected lightning at Titan. Scientists plan to keep looking for clues as Cassini continues to make its way around the Saturn system for another season.

Thursday, September 13, 2012

Planets can form in the galactic center (Near a Black Hole)


Fig : In this artist's conception, a protoplanetary disk of gas and dust (red) is being shredded by the powerful gravitational tides of our galaxy's central black hole. // Credit: David A. Aguilar (CfA)
  
By Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts

  
Published: September 12, 2012
 
At first glance, the center of the Milky Way seems like a very inhospitable place to try to form a planet. Stars crowd each other as they whiz through space like cars on a rush-hour freeway. Supernova explosions blast out shock waves and bathe the region in intense radiation. Powerful gravitational forces from a supermassive black hole twist and warp the fabric of space itself.

Yet new research by astronomers at the Harvard-Smithsonian Center for Astrophysics (CfA) shows that planets still can form in this cosmic maelstrom. For proof, they point to the recent discovery of a cloud of hydrogen and helium plunging toward the galactic center. They argue that this cloud represents the shredded remains of a planet-forming disk orbiting an unseen star.

“This unfortunate star got tossed toward the central black hole. Now it’s on the ride of its life, and while it will survive the encounter, its protoplanetary disk won’t be so lucky,” said Ruth Murray-Clay of the CfA.

Last year, a team of astronomers discovered the cloud in question using the Very Large Telescope in Chile. The group speculated that it formed when gas streaming from two nearby stars collided, like windblown sand gathering into a dune.

Murray-Clay and colleague Avi Loeb propose a different explanation. Newborn stars retain a surrounding disk of gas and dust for millions of years. If one such star dived toward our galaxy’s central black hole, radiation and gravitational tides would rip apart its disk in a matter of years.

They also identify the likely source of the stray star — a ring of stars known to orbit the galactic center at a distance of about one-tenth of a light-year. Astronomers have detected dozens of young, bright O-type stars in this ring, which suggests that hundreds of fainter Sun-like stars also exist there. Interactions between the stars could fling one inward along with its accompanying disk.

Although this protoplanetary disk is being destroyed, the stars that remain in the ring can hold onto their disks. Therefore, they may form planets despite their hostile surroundings.

As the star continues its plunge over the next year, more and more of the disk’s outer material will be torn away, leaving only a dense core. The stripped gas will swirl down into the maw of the black hole. Friction will heat it to high enough temperatures that it will glow in X-rays.

“It’s fascinating to think about planets forming so close to a black hole,” said Loeb. “If our civilization inhabited such a planet, we could have tested Einstein’s theory of gravity much better, and we could have harvested clean energy from throwing our waste into the black hole.”

Tuesday, September 4, 2012

Dark matter near the Sun


Fig: The high-resolution simulation of the Milky Way used to test the mass-measuring technique. Image credit: Dr. A. Hobbs

By Royal Astronomical Society, United Kingdom

Published: August 9, 2012

 Astronomers have found large amounts of invisible dark matter near the Sun. Their results are consistent with the theory that the Milky Way Galaxy is surrounded by a massive “halo” of dark matter, but this is the first study of its kind to use a method rigorously tested against mock data from high-quality simulations. The scientists also have found tantalizing hints of a new dark matter component in our galaxy.

Swiss astronomer Fritz Zwicky first proposed dark matter in the 1930s. He found that clusters of galaxies were filled with a mysterious dark matter that kept them from flying apart. At nearly the same time, Jan Oort in the Netherlands discovered that the density of matter near the Sun was nearly twice what could be explained by the presence of stars and gas alone.

In the intervening decades, astronomers developed a theory of dark matter and structure formation that explains the properties of clusters and galaxies in the universe, but the amount of dark matter in the solar neighborhood has remained more mysterious. For decades after Oort’s measurement, studies found three to six times more dark matter than expected. Then last year new data and a new method claimed far less than expected. The community was left puzzled, generally believing that the observations and analyzes simply weren’t sensitive enough to perform a reliable measurement.

In this latest study, the astronomers are more confident in their measurement and its uncertainties. This is because they used a state-of-the-art simulation of our galaxy to test their mass-measuring technique before applying it to real data. This threw up a number of surprises. They found that standard techniques used over the past 20 years were biased, always tending to underestimate the amount of dark matter. They then devised a new unbiased technique that recovered the correct answer from the simulated data. Applying their technique to the positions and velocities of thousands of orange K dwarf stars near the Sun, they obtained a new measure of the local dark matter density.

“We are 99 percent confident that there is dark matter near the Sun,” said Silvia Garbari from the University of Zürich. “In fact, our favored dark matter density is a little high. There is a 10 percent chance that this is merely a statistical fluke. But with 90 percent confidence, we find more dark matter than expected. If future data confirms this high value, the implications are exciting. It could be the first evidence for a disk of dark matter in our galaxy, as recently predicted by theory and numerical simulations of galaxy formation. Or it could be that the dark matter halo of our galaxy is squashed, boosting the local dark matter density.”

Many physicists are placing their bets on dark matter being a new fundamental particle that interacts only weakly with normal matter — but strongly enough to be detected in experiments deep underground where confusing cosmic-ray events are screened by over a mile of solid rock.

An accurate measure of the local dark matter density is vital for such experiments. “If dark matter is a fundamental particle, billions of these particles will have passed through your body by the time you finish reading this article,” said George Lake from ETH Zürich. “Experimental physicists hope to capture just a few of these particles each year in experiments like XENON and CDMS currently in operation. Knowing the local properties of dark matter is the key to revealing just what kind of particle it consists of.”

Monday, August 6, 2012

NASA's New Mars Rover Sends Higher-Resolution Image


This is one of the first images taken by NASA's Curiosity rover, which landed on Mars the evening of Aug. 5 PDT (morning of Aug. 6 EDT). It was taken through a "fisheye" wide-angle lens on the left "eye" of a stereo pair of Hazard-Avoidance cameras on the left-rear side of the rover. The image is one-half of full resolution. The clear dust cover that protected the camera during landing has been sprung open. Part of the spring that released the dust cover can be seen at the bottom right, near the rover's wheel.

On the top left, part of the rover's power supply is visible.

Some dust appears on the lens even with the dust cover off.

The cameras are looking directly into the sun, so the top of the image is saturated. Looking straight into the sun does not harm the cameras. The lines across the top are an artifact called "blooming" that occurs in the camera's detector because of the saturation.

As planned, the rover's early engineering images are lower resolution. Larger color images from other cameras are expected later in the week when the rover's mast, carrying high-resolution cameras, is deployed.


Image Credit: NASA/JPL-Caltech 

By NASA Jet Propulsion Laboratory, CalTech
Published on : 6th August, 2012


About two hours after landing on Mars and beaming back its first image, NASA's Curiosity rover transmitted a higher-resolution image of its new Martian home, Gale Crater. Mission Control at NASA's Jet Propulsion Laboratory in Pasadena, Calif., received the image, taken by one of the vehicle's lower-fidelity, black-and-white Hazard Avoidance Cameras - or Hazcams.
The black-and-white, 512 by 512 pixel image, taken by Curiosity's rear-left Hazcam, can be found at: http://www.nasa.gov/mission_pages/msl/multimedia/msl5.html .

"Curiosity's landing site is beginning to come into focus," said John Grotzinger, project manager of NASA's Mars Science Laboratory mission, at the California Institute of Technology in Pasadena. "In the image, we are looking to the northwest. What you see on the horizon is the rim of Gale Crater. In the foreground, you can see a gravel field. The question is, where does this gravel come from? It is the first of what will be many scientific questions to come from our new home on Mars."

While the image is twice as big in pixel size as the first images beamed down from the rover, they are only half the size of full-resolution Hazcam images. During future mission operations, these images will be used by the mission's navigators and rover drivers to help plan the vehicle's next drive. Other cameras aboard Curiosity, with color capability and much higher resolution, are expected to be sent back to Earth over the next several days.

Curiosity landed at 10:32 p.m. Aug. 5, PDT, (1:32 a.m. EDT, Aug. 6) near the foot of a mountain three miles (about five kilometers) tall inside Gale Crater, 96 miles (nearly 155 kilometers) 7in diameter. During a nearly two-year prime mission, the rover will investigate whether the region has ever offered conditions favorable for microbial life, including the chemical ingredients for life.

The mission is managed by JPL for NASA's Science Mission Directorate in Washington. The rover was designed, developed and assembled at JPL, a division of Caltech.
For more information on the mission, visit:
http://www.nasa.gov/mars and http://marsprogram.jpl.nasa.gov/msl .
Follow the mission on Facebook and Twitter at
http://www.facebook.com/marscuriosity and http://www.twitter.com/marscuriosity
2012-231

Guy Webster / D.C. Agle 818-354-6278 / 818-393-9011
Jet Propulsion Laboratory, Pasadena, Calif.
guy.webster@jpl.nasa.gov / agle@jpl.nasa.gov

Dwayne Brown 202-358-1726
NASA Headquarters, Washington
dwayne.c.brown@nasa.gov

Thursday, July 5, 2012

Higgs Boson's like Boson Found at CERN : A Ground Breaking Discovery in Particle Physics

Fig : A proton-proton collision event in the CMS experiment producing two high-energy photons (red towers). This is what we would expect to see from the decay of a Higgs boson but it is also consistent with background Standard Model physics processes. © CERN 2012

By CERN, Geneva

Published on 4 July 2012. 

At a seminar held at CERN today as a curtain raiser to the year’s major particle physics conference, ICHEP2012 in Melbourne, the ATLAS and CMS experiments presented their latest preliminary results in the search for the long sought Higgs particle. Both experiments observe a new particle in the mass region around 125-126 GeV.

“We observe in our data clear signs of a new particle, at the level of 5 sigma, in the mass region around 126 GeV. The outstanding performance of the LHC and ATLAS and the huge efforts of many people have brought us to this exciting stage,” said ATLAS experiment spokesperson Fabiola Gianotti, “but a little more time is needed to prepare these results for publication.”

"The results are preliminary but the 5 sigma signal at around 125 GeV we’re seeing is dramatic. This is indeed a new particle. We know it must be a boson and it’s the heaviest boson ever found,” said CMS experiment spokesperson Joe Incandela. “The implications are very significant and it is precisely for this reason that we must be extremely diligent in all of our studies and cross-checks."

“It’s hard not to get excited by these results,” said CERN Research Director Sergio Bertolucci. “ We stated last year that in 2012 we would either find a new Higgs-like particle or exclude the existence of the Standard Model Higgs. With all the necessary caution, it looks to me that we are at a branching point: the observation of this new particle indicates the path for the future towards a more detailed understanding of what we’re seeing in the data.”

The results presented today are labelled preliminary. They are based on data collected in 2011 and 2012, with the 2012 data still under analysis.  Publication of the analyses shown today is expected around the end of July. A more complete picture of today’s observations will emerge later this year after the LHC provides the experiments with more data.

The next step will be to determine the precise nature of the particle and its significance for our understanding of the universe. Are its properties as expected for the long-sought Higgs boson, the final missing ingredient in the Standard Model of particle physics? Or is it something more exotic? The Standard Model describes the fundamental particles from which we, and every visible thing in the universe, are made, and the forces acting between them. All the matter that we can see, however, appears to be no more than about 4% of the total. A more exotic version of the Higgs particle could be a bridge to understanding the 96% of the universe that remains obscure.

“We have reached a milestone in our understanding of nature,” said CERN Director General Rolf Heuer. “The discovery of a particle consistent with the Higgs boson opens the way to more detailed studies, requiring larger statistics, which will pin down the new particle’s properties, and is likely to shed light on other mysteries of our universe.”

Positive identification of the new particle’s characteristics will take considerable time and data. But whatever form the Higgs particle takes, our knowledge of the fundamental structure of matter is about to take a major step forward.

Thursday, June 21, 2012

Cracks in the standard model

The latest results from the BaBar experiment may suggest a surplus over standard model predictions of a type of particle decay called “B to D-star-tau-nu.” In this conceptual art, an electron and positron collide, resulting in a B meson (not shown) and an antimatter B-bar meson, which then decays into a D meson and a tau lepton as well as a smaller antineutrino. Credit: Greg Stewart, SLAC National Accelerator Laboratory

Published by Science and Technology Facilities Council, United Kingdom
Published: June 19, 2012

Recently analyzed data from BaBar, a high-energy physics experiment in the U.S., may suggest possible flaws in the standard model of particle physics — the reigning description of how the universe works on subatomic scales. The data from BaBar, a particle accelerator at the U.S. Department of Energy’s (DOE) SLAC National Accelerator Laboratory, which was built by 10 countries including the United Kingdom, show that a particular type of particle decay happens more often than the standard model says it should.

The data refers to a particle called the B-bar meson that decays into a D meson, an antineutrino, and a tau lepton. This particular decay of a B meson should, theoretically, only happen in one in every 100 cases, but the new results from BaBar show it is happening too often. While the level of certainty of the difference, or excess, is not enough to claim a break from the standard model, the results are a potential sign of something amiss and are likely to impact existing theories.

“The excess over the standard model prediction is exciting,” said Michael Roney from the University of Victoria in Canada. “The results are significantly more sensitive than previously published studies of these decays. But before we can claim an actual discovery, other experiments have to replicate it and rule out the possibility this isn’t just an unlikely statistical fluctuation.”

“This result is very interesting, and, if confirmed, could be a sign of physics beyond the standard model,” said Adrian Bevan from Queen Mary, University of London.

“Our current theory about the fundamental forces of the universe, which has been around for nearly 40 years, is beginning to show signs of failure,” said Fergus Wilson from STFC’s Rutherford Appleton Laboratory. “Just as exciting, our new measurement indicates that any replacement theory will need to be more exotic and complex than we could have hoped or imagined. Although we must not jump to conclusions based on just one measurement, this new result is one of the most compelling yet. It follows on from previous indications recently reported by us, all of which point in the same direction.”

The BaBar experiment, which collected data from 1999 to 2008, was designed to explore various mysteries of particle physics, including why the universe contains matter but no antimatter. Data from the collaboration, which includes 75 institutions from Canada, France, Germany, Italy, Norway, Russia, Spain, the United Kingdom, and the U.S., helped confirm a matter-antimatter theory for which two researchers won the 2008 Nobel Prize in physics. At its peak, some 90 British particle physicists and engineers from 11 institutions took part in the experiment.

Researchers continue to apply BaBar data to a variety of questions in particle physics. “This result will help guide teams of researchers looking for potentially related new physics effects at the Large Hadron Collider and at other particle physics labs around the world,” said Bevan.

“If the excess decays shown are confirmed, it will be exciting to figure out what is causing it," said Abner Soffer from Tel Aviv University in Israel. “Other theories involving new physics are waiting in the wings, but the BaBar results already rule out one important model called the Two Higgs Doublet Model. We hope our results will stimulate theoretical discussion about just what the data are telling us about new physics.”

The researchers also hope their colleagues in the Belle collaboration, which studies the same types of particle collisions, see something similar. "If they do, the combined significance could be compelling enough to suggest how we can finally move beyond the standard model,” said Roney.

NASA Mars rover team aims for landing closer to prime science site

This image shows changes in the target landing area for Curiosity, the rover of NASA's Mars Science Laboratory project. The larger ellipse was the target area prior to early June 2012, when the project revised it to the smaller ellipse centered nearer to the foot of Mount Sharp, inside Gale Crater. Credit: NASA/JPL-Caltech/ESA/DLR/FU Berlin/MSSS

By NASA Headquarters, Washington, D.C.

Published: June 18, 2012
 
NASA has narrowed the target for its most advanced Mars rover, Curiosity, which will land on the Red Planet in August. The car-sized rover will arrive closer to its ultimate destination for science operations, but also closer to the foot of a mountain slope that poses a landing hazard.

"We're trimming the distance we'll have to drive after landing by almost half," said Pete Theisinger from NASA's Jet Propulsion Laboratory (JPL) in Pasadena, California. "That could get us to the mountain months earlier."

It was possible to adjust landing plans because of increased confidence in precision landing technology aboard the Mars Science Laboratory (MSL) spacecraft, which is carrying the Curiosity rover. That spacecraft can aim closer without hitting Mount Sharp at the center of Gale Crater. Rock layers located in the mountain are the prime location for research with the rover.

Curiosity is scheduled to land at approximately 1:31 a.m. EDT August 6. Following checkout operations, Curiosity will begin a two-year study of whether the landing vicinity ever offered an environment favorable for microbial life.

The landing target ellipse had been approximately 12 miles (20 kilometers) wide and 16 miles (25km) long. Continuing analysis of the new landing system's capabilities has allowed mission planners to shrink the area to approximately 4 miles (7km) wide and 12 miles (20km) long, assuming winds and other atmospheric conditions are as predicted.

Even with the smaller ellipse, Curiosity will be able to touch down at a safe distance from steep slopes at the edge of Mount Sharp.

"We have been preparing for years for a successful landing by Curiosity, and all signs are good," said Dave Lavery from NASA. "However, landing on Mars always carries risks, so success is not guaranteed. Once on the ground, we'll proceed carefully. We have plenty of time since Curiosity is not as life-limited as the approximate 90-day missions like NASA’s Mars Exploration Rovers and the Phoenix lander.”

Since the spacecraft was launched in November 2011, engineers have continued testing and improving its landing software. MSL will use an upgraded version of flight software installed on its computers during the past two weeks. Additional upgrades for Mars surface operations will be sent to the rover about a week after landing.

Other preparations include upgrades to the rover's software and understanding effects of debris coming from the drill the rover will use to collect samples from rocks on Mars. Experiments at JPL indicate that Teflon from the drill could mix with the powdered samples. Testing will continue past landing with copies of the drill. The rover will deliver the samples to onboard instruments that can identify mineral and chemical ingredients.

"The material from the drill could complicate but will not prevent analysis of carbon content in rocks by one of the rover's 10 instruments. There are workarounds,” said John Grotzinger from the California Institute of Technology in Pasadena. "Organic carbon compounds in an environment are one prerequisite for life. We know meteorites deliver non-biological organic carbon to Mars, but not whether it persists near the surface. We will be checking for that and for other chemical and mineral clues about habitability."

Curiosity will be in good company as it nears landing. Two NASA Mars orbiters, along with a European Space Agency (ESA) orbiter, will be in position to listen to radio transmissions as MSL descends through Mars' atmosphere.

Soil Moisture Climate Data Record observed from Space

                     Fig : Dry areas and moist areas - a map created from satellite data

Published by Vienna University of Technology and Free University of Amsterdam

Date : 19th June, 2012


The future of the world’s climate is determined by various parameters, such as the density of clouds or the mass of the Antarctic ice sheet. One of these crucial climate parameters is soil moisture, which is hard to measure on a global scale. Now, the European Space Agency (ESA), in cooperation with the Vienna University of Technology (Institute of Photogrammetry and Remote Sensing) and the Free University of Amsterdam, is presenting a data set, containing global soil moisture data from 1978 to 2010. This was possible by extensive mathematical analysis of satellite data

Warmer Climate Changes Soil MoistureEven though soil moisture makes up only about 0.001 % of the total water found on earth, it plays a crucial rule in the climate system. “The link between climate and soil moisture is still not well understood, because so far reliable long-term data has not been available”, says professor Wolfgang Wagner (Vienna University of Technology). One of the predicted consequences of global warming is that warming will lead to higher evaporation rates and hence soil drying in some regions. But drier soils themselves will heat up the air near the land surface. This positive feedback mechanism may thus act to increase the number of extreme heat waves similar to those experienced in Western Europe in 2003 and Russia in 2010. On the other hand, hot air can hold more water and lead to increased precipitation in some regions. “The effects of climate change vary from region to region”, says Wolfgang Werner, “this makes it all the more important to have reliable long-term data for the whole globe.”

Microwaves from SpaceSoil moisture can be measured with satellites using microwave radiation. Unlike visible light, microwaves can penetrate clouds. Satellites can either measure the earths natural microwave radiation to calculate the local soil moisture (passive measurement) or the satellite sends out microwave pulses and measures how strongly the pulse is reflected by the surface (active measurement). Over the years, various satellites with different measurement methods have been used. “It is a great challenge to extract reliable soil moisture data from these very different datasets, spanning several decades”, says Wolfgang Wagner.

To address the current lack of long-term soil moisture data the European Space Agency (ESA) has been supporting the development of a global soil moisture data record derived by merging measurements acquired by a series of European and American satellites. ESA is now happy to announce that the release of the first soil moisture data record spanning the period 1978 to 2010. The soil moisture data record was generated by merging two soil moisture data sets, one derived from active microwave observations and the other from passive microwave observations. The active data set was generated by the Vienna University of Vienna (TU Wien) based on observations from the C-band scatterometers on board of ERS-1, ERS-2 and METOP-A; the passive data set was generated by the VU University Amsterdam in collaboration with NASA based on passive microwave observations.

Technological ChallengesThe harmonization of these datasets aimed to take advantage of both microwave techniques, but still the challenges were significant. Amongst other issues, the potential influences of mission specifications, sensor degradation, drifts in calibration, and algorithmic changes had to be accounted for as accurately as possible. Also, it had to be guaranteed that the soil moisture data retrieved from the different active and passive microwave instruments are physically consistent. As this is the first release of such a product, not all caveats and limitations of the data are yet fully understood. It will therefore require the active cooperation of the remote sensing and climate modeling communities to jointly validate the satellite and model data, and advance the science in both fields along the way.

Black Holes as Particle Detectors


Fig : Artist's impression of a black hole, surrounded by axions.

Published by Vienna University of Technology
Date : 18th June, 2012 



Finding new particles usually requires high energies – that is why huge accelerators have been built, which can accelerate particles to almost the speed of light. But there are other creative ways of finding new particles: At the Vienna University of Technology, scientists presented a method to prove the existence of hypothetical “axions”. These axions could accumulate around a black hole and extract energy from it. This process could emit gravity waves, which could then be measured.

Axions  are hypothetical particles with a very low mass. According to Einstein, mass is directly related to energy, and therefore very little energy is required to produce axions. “The existence of axions is not proven, but it is considered to be quite likely”, says Daniel Grumiller. Together with Gabriela Mocanu he calculated at the Vienna University of Technology (Institute for Theoretical Physics), how axions could be detected.

Astronomically Large Particles
In quantum physics, every particle is described as a wave. The wavelength corresponds to the particle’s energy. Heavy particles have small wavelengths, but the low-energy axions can have wavelengths of many kilometers. The results of Grumiller and Mocanu, based on works by Asmina Arvanitaki and Sergei Dubovsky (USA/Russia), show that axions can circle a black hole, similar to electrons circling the nucleus of an atom. Instead of the electromagnetic force, which ties the electrons and the nucleus together, it is the gravitational force which acts between the axions and the black hole.

The Boson-Cloud
However, there is a very important difference between electrons in an atom and axions around a black hole: Electrons are fermions – which means that two of them can never be in the same state. Axions on the other hand are bosons, many of them can occupy the same quantum state at the same time. They can create a “boson-cloud” surrounding the black hole. This cloud continuously sucks energy from the black hole and the number of axions in the cloud increases.

Sudden CollapseSuch a cloud is not necessarily stable. “Just like a loose pile of sand, which can suddenly slide, triggered by one single additional grain of sand, this boson cloud can suddenly collapse”, says Daniel Grumiller. The exciting thing about such a collapse is that this “bose-nova” could be measured. This event would make space and time vibrate and emit gravity waves. Detectors for gravity waves have already been developed, in 2016 they are expected to reach an accuracy at which gravity waves should be unambiguously detected. The new calculations in Vienna show that these gravity waves can not only provide us with new insights about astronomy, they can also tell us more about new kinds of particles.

Jupiter’s Trojans on an Atomic Scale


 Fig : The Bohr model assumes that the electron moves around the nucleus, much like a planet around its star.

By Vienna University of Technology

Published on 24th January, 2012

Planets can orbit a star for billions of years. Electrons circling the atomic nucleus are often visualized as tiny planets. But due to quantum effects, the behavior of atoms usually differs significantly from planetary systems. Austrian and US-American scientists have now succeeded in keeping electrons on planet-like orbits for a long time. This was done using an idea from astronomy: Jupiter stabilizes the orbits of asteroids (the so called “Trojans”), and in a very similar way, the orbits of electrons around the nucleus can be stabilized using an electromagnetic field. The results of this experiment have now been published in the journal “Physical Review Letters”.

Giant AtomsThey are probably the largest atoms on earth: “The diameter of the electronic orbits is several hundredths of a millimeter – an enormous distance on an atomic scale”, says Shuhei Yoshida (Vienna UT). The atoms are even larger than erythrocytes. Yoshida made the calculations at Vienna University of Technology, the experiment was carried out at Rice University in Houston (Texas).

The Electron is not a PlanetThe idea that atoms are similar to planetary systems dates back to Niels Bohr: he came up with the first atomic model, in which electrons circle the nucleus in well-defined orbits. This view, however, is now seen to be outdated. In quantum physics, the electron is described as a quantum wave, or a “probability cloud”, that surrounds the atomic nucleus. The location of an electron in the ground state (the lowest possible energy level) is not well defined. Relative to the nucleus, it is situated in all possible directions at the same time. Asking about its “real position” or its orbit just does not make sense. Only if the electron is transferred into a state of higher energy, it can be manipulated in such a way that it moves along orbit-like paths.

Jupiter’s trick – Used for the AtomUnlike planets, electrons will not keep moving in such an orbit for ever. “Without additional stabilization, the electron-wave would become delocalized after a few cycles”, says Professor Joachim Burgdörfer, head of the Institute for Theoretical Physics at Vienna UT. A simple idea on how to stabilize orbits has been known in astronomy for a long time: the gravity of Jupiter, the heaviest planet in our solar system, stabilizes the orbits of the “Trojans” – thousands of small asteroids. They aggregate around so-called “Lagrange points” on Jupiter’s orbital path. Staying close to these Lagrange points, the asteroids circle the sun together with the planet – with exactly the same orbital velocity, so that the asteroids never collide with Jupiter.

In the experiment, the stabilizing influence of Jupiter’s gravity is substituted by a cleverly designed electromagnetic field. The field oscillates precisely with the frequency corresponding to the orbital period of the electron around the nucleus. It sets the pace for the electron, and that way the electron-wave is kept at a specific point for a long time – much like a large number of asteroids, staying close to Jupiter’s Lagrange points on their orbit around the sun. Quantum physics even allows manipulations which are impossible in a planetary system: using the electromagnetic field, the electron can by shifted into a different orbit – as if the orbit of Jupiter and its asteroids was suddenly shifted to the orbit of Saturn.

Big and SmallThe physicists succeeded in creating an atomic miniature version of a solar system and preparing atoms which are remarkably close to the historic Bohr model. In future, the researchers want to prepare atoms in which several electrons move on planetary orbits at the same time. Using such atoms, it should be possible to investigate in greater detail how the quantum-world of tiny objects corresponds to the classical world as we perceive it.

Wednesday, May 16, 2012

Overfed Black Holes Shut Down Galactic Star-Making



PASADENA, Calif. -- The Herschel Space Observatory has shown galaxies with the most powerful, active black holes at their cores produce fewer stars than galaxies with less active black holes. The results are the first to demonstrate black holes suppressed galactic star formation when the universe was less than half its current age. Credit: Illustration: NASA/ESA/JPL-Caltech/STScI/R. Hurt (SSC)

Published : May 9, 2012
By JPL


"We want to know how star formation and black hole activity are linked," said Mathew Page of University College London's Mullard Space Science Laboratory in the United Kingdom and lead author of a paper describing these findings in this week's journal Nature. "The two processes increase together up to a point, but the most energetic black holes appear to turn off star formation."

Supermassive black holes, weighing as much as millions of suns, are believed to reside in the hearts of all large galaxies. When gas falls upon these monsters, the material is accelerated and heated around the black hole, releasing great torrents of energy. Earlier in the history of the universe, these giant, luminous black holes, called active galactic nuclei, were often much brighter and more energetic. Star formation was also livelier back then.

Studies of nearby galaxies suggest active black holes can squash star formation. The revved-up, central black holes likely heat up and disperse the galactic reservoirs of cold gas needed to create new stars. These studies have only provided "snapshots" in time, however, leaving the overall relationship of active galactic nuclei and star formation unclear, especially over the cosmic history of galaxy formation.

"To understand how active galactic nuclei affect star formation over the history of the universe, we investigated a time when star formation was most vigorous, between eight and 12 billion years ago," said co-author James Bock, a senior research scientist at NASA's Jet Propulsion Laboratory in Pasadena, Calif., and co-coordinator of the Herschel Multi-tiered Extragalactic Survey. "At that epoch, galaxies were forming stars 10 times more rapidly than they are today on average. Many of these galaxies are incredibly luminous, more than 1,000 times brighter than our Milky Way."

For the new study, Page and colleagues used Herschel data that probed 65 galaxies at wavelengths equivalent to the thickness of several sheets of office paper, a region of the light spectrum known as far-infrared. These wavelengths reveal the rate of star formation, because most of the energy released by developing stars heats surrounding dust, which then re-radiates starlight out in far-infrared wavelengths.

The researchers compared their infrared readings with X-rays streaming from the active central black holes in the survey's galaxies, measured by NASA's Chandra X-ray Observatory. At lower intensities, the black holes' brightness and star formation increased in sync. However, star formation dropped off in galaxies with the most energetic central black holes. Astronomers think inflows of gas fuel new stars and supermassive black holes. Feed a black hole too much, however, and it starts spewing radiation into the galaxy that prevents raw material from coalescing into new stars.

"Now that we see the relationship between active supermassive black holes and star formation, we want to know more about how this process works," said Bill Danchi, Herschel program scientist at NASA Headquarters in Washington. "Does star formation get disrupted from the beginning with the formation of the brightest galaxies of this type, or do all active black holes eventually shut off star formation, and energetic ones do this more quickly than less active ones?"

Herschel is a European Space Agency cornerstone mission, with science instruments provided by consortia of European institutes and important participation by NASA. NASA's Herschel Project Office is based at JPL.

Sunday, April 22, 2012

NASA's WISE mission sees skies ablaze with blazars


Fig : This image taken by NASA's Wide-field Infrared Survey Explorer (WISE) shows a blazar — a voracious supermassive black hole inside a galaxy with a jet that happens to be pointed right toward Earth. These objects are rare and hard to find, but astronomers have discovered that they can use the WISE all-sky infrared images to uncover new ones. So far, researchers have found more than 200 new blazars, and they say WISE has the potential to find many more. Active black holes are often found at the hearts of elliptical galaxies. Not all black holes have jets, but when they do, the jets can be pointed in any direction. If a jet happens to shine at Earth, the object is called a blazar. 

Published By NASA/JPL
Published on : April 16, 2012

Astronomers are actively hunting a class of supermassive black holes throughout the universe called blazars thanks to data collected by NASA’s Wide-field Infrared Survey Explorer (WISE). The mission has revealed more than 200 blazars and has the potential to find thousands more. Blazars are among the most energetic objects in the universe. They consist of supermassive black holes actively “feeding,” or pulling matter onto them, at the cores of giant galaxies. As the matter is dragged toward the supermassive hole, some of the energy is released in the form of jets traveling at nearly the speed of light. Blazars are unique because their jets are pointed directly at us.

“Blazars are extremely rare because it’s not too often that a supermassive black hole’s jet happens to point towards Earth,” said Francesco Massaro of the Kavli Institute for Particle Astrophysics and Cosmology near Palo Alto, California, and principal investigator of the research. “We came up with a crazy idea to use WISE’s infrared observations, which are typically associated with lower-energy phenomena, to spot high-energy blazars, and it worked better than we hoped.”

The findings ultimately will help researchers understand the extreme physics behind super-fast jets and the evolution of supermassive black holes in the early universe. WISE surveyed the entire celestial sky in infrared light in 2010, creating a catalog of hundreds of millions of objects of all types. Its first batch of data was released to the larger astronomy community in April 2011, and the full-sky data were released last month.

Massaro and his team used the first batch of data, covering more than half of the sky, to test their idea that WISE could identify blazars. Astronomers often use infrared data to look for the weak heat signatures of cooler objects. Blazars are not cool; they are scorching hot and glow with the highest-energy type of light, called gamma rays. However, they also give off a specific infrared signature when particles in their jets are accelerated to almost the speed of light. One of the reasons the team wants to find new blazars is to help identify mysterious spots in the sky sizzling with high-energy gamma rays, many of which are suspected to be blazars. NASA’s Fermi mission has identified hundreds of these spots, but other telescopes are needed to narrow in on the source of the gamma rays. Sifting through the early WISE catalog, the astronomers looked for the infrared signatures of blazars at the locations of more than 300 gamma-ray sources that remain mysterious. The researchers were able to show that a little more than half of the sources are most likely blazars. “This is a significant step toward unveiling the mystery of the many bright gamma-ray sources that are still of unknown origin,” said Raffaele D’Abrusco, a co-author of the papers from the Harvard Smithsonian Center for Astrophysics in Cambridge, Massachusetts. “WISE’s infrared vision is actually helping us understand what’s happening in the gamma-ray sky.”

The team also used WISE images to identify more than 50 additional blazar candidates and observed more than 1,000 previously discovered blazars. According to Massaro, the new technique, when applied directly to WISE’s full-sky catalog, has the potential to uncover thousands more. “We had no idea when we were building WISE that it would turn out to yield a blazar gold mine,” said Peter Eisenhardt, WISE project scientist at NASA’s Jet Propulsion Laboratory in Pasadena, California, who is not associated with the new studies. “That’s the beauty of an all-sky survey. You can explore the nature of just about any phenomenon in the universe.”

Saturday, March 3, 2012

Milky way may swarm with nomad planets


Figure : This image is an artistic rendition of a nomad object wandering the interstellar medium. The object is intentionally blurry to represent uncertainty about whether it has an atmosphere. A nomadic object may be an icy body akin to an object found in the outer solar system, a more rocky material akin to asteroids, or even a gas giant similar in composition to the most massive solar system planets and exoplanets.

By Stanford University
Published: February 24, 2012


Our galaxy may be awash in homeless planets, wandering through space instead of orbiting a star. In fact, there may be 100,000 times more nomad planets in the Milky Way than stars, according to a new study by researchers at the Kavli Institute for Particle Astrophysics and Cosmology (KIPAC) in Stanford, California.

If observations confirm the estimate, this new class of celestial objects will affect current theories of planet formation and could change our understanding of the origin and abundance of life.

“If any of these nomad planets are big enough to have a thick atmosphere, they could have trapped enough heat for bacterial life to exist,” said Louis Strigari from KIPAC. Although nomad planets don’t bask in the warmth of a star, they may generate heat through internal radioactive decay and tectonic activity.

Searches over the past two decades have identified more than 500 planets outside our solar system, almost all of which orbit stars. Last year, researchers detected about a dozen nomad planets, using a technique called gravitational microlensing, which looks for stars whose light is momentarily refocused by the gravity of passing planets.

The research produced evidence that roughly two nomads exist for every typical, main sequence star in our galaxy. The new study estimates that nomads may be up to 50,000 times more common than that.

To arrive at what Strigari called “an astronomical number,” the KIPAC team took into account the known gravitational pull of the Milky Way Galaxy, the amount of matter available to make such objects, and how that matter might divvy itself up into objects ranging from the size of Pluto to larger than Jupiter. Not an easy task, considering no one is quite sure how these bodies form. According to Strigari, some were probably ejected from solar systems, but research indicates that not all of them could have formed in that fashion.

“To paraphrase Dorothy from The Wizard of Oz, if correct, this extrapolation implies that we are not in Kansas anymore, and in fact we never were in Kansas,” said Alan Boss from the Carnegie Institution for Science in Washington, D.C. “The universe is riddled with unseen planetary-mass objects that we are just now able to detect.”

A good count, especially of the smaller objects, will have to wait for the next generation of big survey telescopes, especially the space-based Wide-Field Infrared Survey Telescope and the ground-based Large Synoptic Survey Telescope, both set to begin operation in the early 2020s.

A confirmation of the estimate could lend credence to another possibility mentioned in the paper — that as nomad planets roam their starry pastures, collisions could scatter their microbial flocks to seed life elsewhere.

“Few areas of science have excited as much popular and professional interest in recent times as the prevalence of life in the universe,” said Roger Blandford from KIPAC. “What is wonderful is that we can now start to address this question quantitatively by seeking more of these erstwhile planets and asteroids wandering through interstellar space, and then speculate about hitchhiking bugs.”

Latest Findings on Moon’s Impact History


Figure: Post-lunar cataclysm diagram of our solar system.
Credit: LPI/Marchi/Bottke/Kring/Morbidelli


Published : February 28, 2012
By : NASA's Ames Research Center in Moffett Field, California


During Earth’s earliest days, our planet and other bodies in the inner solar system, including the Moon, experienced repeated impacts from debris that formed the building blocks of the planets. Over time, as material was swept up and incorporated into the inner planets, the rate of impacts decreased. Then, roughly 4 billion years ago, a second wave of impacts appears to have taken place, with lunar projectiles hitting at much higher speeds. This increase could reflect the origin of the debris where main belt asteroids were dislodged and sent into the inner solar system by shifts in the orbits of the giant planets.

A team of researchers from the NASA Lunar Science Institute (NLSI) at NASA’s Ames Research Center in Moffett Field, California, has discovered that debris that caused a “lunar cataclysm” on the Moon 4 billion years ago struck it at much higher speeds than those that made the most ancient craters. The scientists found evidence supporting this scenario by examining the history of crater formation on the Moon.

Scientists analyzed digital maps of the lunar surface to learn about its history. Their analysis shows that craters formed near the 533-mile-diameter (860 kilometers) Nectaris impact basin were created by projectiles hitting twice as fast as those found on more ancient terrains. This was represented by a subtle shift in crater sizes, with the craters themselves 30 to 40 percent larger on average than those found in comparable populations with older craters. The scientists believe this can be best explained by an increase in the velocities of the projectiles that produced the younger craters.

The increase in velocities may indicate a change in the solar system when the craters were created. The analysis supports the lunar cataclysm hypothesis that the brief pulse of impacting objects 4 billion years ago was due to gravitational disturbances caused by the reorganization of the giant planets as their orbits changed. Nectaris, a crater close to the Apollo 16 landing site, appears to have recorded the spike in asteroid impacts during the lunar cataclysm.

Determining the magnitude and duration of any impact cataclysm and testing that hypothesis is a top science priority for future exploration of the Moon, according to a previously published report by the National Research Council.

When Apollo astronauts gathered rock samples from the Moon, many samples had ages dating back 3.9 to 4 billion years ago, suggesting an enhanced pulse of bombardment. If a bombardment of asteroids hit the Moon as theorized, there could be indicators left on the lunar surface that would help validate the theory. Detailed mapping by the United States Geological Survey has previously identified small regions of the lunar surface that might contain clues about the bombardment. The team re-studied those ancient surfaces and measured the sizes of the impact craters using new data obtained from the Lunar Orbiter Laser Altimeter, an instrument on NASA’s Lunar Reconnaissance Orbiter (LRO) currently orbiting around the Moon.

“This is an exciting time for lunar research with LRO and other spacecraft providing so much new data,” said Simone Marchi from NLSI. “Collaborating with scientists of different disciplines allowed us to link these observational data to dynamical models to put new constraints on solar system history.”

The inferred increase in velocity seems to have occurred after the Moon’s 1,550-mile-diameter (2,500km) South Pole-Aitken Basin was produced, but before the formation of the largest lava-filled impact basins on the lunar nearside, visible from backyards around the world.

“It is fascinating that the surface of our own Moon records evidence of orbital changes in Jupiter and Saturn that took place so long ago,” said Yvonne Pendleton from NLSI.

Saturday, February 18, 2012

New tools reveal astronomical mysteries


Artist's conception of dusty disk around young star TW Hydrae.
Credit: Bill Saxton, NRAO/AUI/NSF

By NRAO, Socorro, New Mexico

Date: February 17, 2012

Two new and powerful research tools are helping astronomers gain key insights needed to transform our understanding of important processes across the breadth of astrophysics. The Atacama Large Millimeter/submillimeter Array (ALMA), and the newly expanded Karl G. Jansky Very Large Array (VLA) offer scientists vastly improved and unprecedented capabilities for frontier research.

The cutting-edge research enabled by these powerful telescope systems extends from unlocking the mysteries of star- and planet-formation processes in the Milky Way and nearby galaxies to probing the emergence of the first stars and galaxies at the universe’s “cosmic dawn,” and along the way helping scientists figure out where Earth’s water came from.

A trio of scientists outlined recent accomplishments of ALMA and the Jansky VLA, both of which are in the “early science” phase of their development, as construction progresses toward their completion.

One exciting area where the two facilities are expected to unlock long-standing mysteries is the study of how new stars and planets form in our Milky Way Galaxy and in its nearby neighbors.

“These new ‘eyes’ will allow us to study, at unprecedented scales, the motion of gas and dust in the disks surrounding young stars, and put our theories of planet formation to the test,” said David Wilner from the Harvard-Smithsonian Center for Astrophysics in Cambridge, Massachusetts. In addition, he added, the new telescopes will help show the first stages of planet formation — the growth of dust grains and pebbles in the disks — as well as show the gravitational interactions between the disks and new planets embedded within them.

“The power of ALMA and the expanded VLA also will allow us to study many more young stars and solar systems — probably thousands — than we could before. This will help us understand the processes that produce the huge diversity we already see in extrasolar planetary systems,” Wilner said.

One set of early ALMA observations of a disk around a young star nearly 170 light-years from Earth promises to shed light on a much closer question — the origin of Earth’s oceans. Scientists think much of our planet’s water came from comets bombarding the young Earth, but aren’t sure just how much.

The key clue has been the fact that our seawater contains a higher percentage of deuterium — a heavy isotope of hydrogen — than is found in the gas between stars in our galaxy. Scientists think this enrichment of deuterium is caused by low-temperature chemical reactions in the cold outer regions of the disk surrounding the young Sun — the region from which comets arise. The new ALMA observations, however, show that in a disk surrounding the young star TW Hydrae deuterium also is found in the warmer region closer to the star.

“With further studies like this, we are on the path to more precisely measuring the percentage of Earth’s ocean water that might have come from comets,” Wilner said.

Looking beyond the Milky Way, Christine Wilson from McMaster University in Ontario, Canada, points out that ALMA and the expanded VLA will give astronomers the ability to carefully study star formation in widely different types of galaxies, from the very faint to the extremely luminous and active ones.

“This will help us understand what regulates the rate at which stars form in galaxies,” Wilson said. One result from the VLA, however, seems to add to the mystery about this. John Cannon of Macalester College in St. Paul, Minnesota, and his colleagues studied a small star-forming galaxy and found that its mass is largely dark matter rather than the gas usually thought of as the fuel for star formation. “Their sample of small, but star-forming, galaxies has low amounts of gas, and this is puzzling,” Wilson said.

The two new telescopes also will help extend the study of galaxy evolution and star formation back to the universe’s youth, 10 or 12 billion years ago.

“The Jansky VLA and ALMA are ideally suited to reveal important new facts about very distant galaxies, which we see as they were when the universe was a fraction of its current age,” said Kartik Sheth of the National Radio Astronomy Observatory (NRAO) in Charlottesville, Virginia. “The new capabilities of these two facilities will show us the details of dust and gas in galaxies of this early epoch, thus helping us learn how such galaxies evolved into the types we see in the current universe.”

Already, Sheth said, both instruments have provided tantalizing glimpses of both atomic and molecular gas in galaxies as distant as 12 billion light-years.

“The huge range of ages in galaxies that we will be able to observe with these facilities represents a big step in piecing together the full history of how galaxies formed, evolved, and made stars over the vast span of cosmic time,” Sheth said.

“The early research results from ALMA and the Jansky VLA show the tremendous potential of these facilities for studies of galaxies and their history,” said Fred K. Y. Lo from the NRAO. “However, this is just one area of research in which these telescopes will make landmark contributions to our understanding of astronomical processes. ALMA and the Jansky VLA are leading tools for answering the most important questions of 21st-century astrophysics.”

Giant Eruption from Eta Carinae



These images reveal light from a massive stellar outburst in the Carina Nebula reflecting off dust clouds surrounding a behemoth double-star system. The color image at left shows the Carina Nebula, a star-forming region located 7,500 light-years from Earth. The massive double-star system Eta Carinae resides near the top of the image. The star system, about 120 times more massive than the Sun, produced a spectacular outburst that was seen on Earth from 1837 to 1858. The three black-and-white images at right show light from the eruption illuminating dust clouds near the doomed star system as it moves through them. The effect is like shining a flashlight on different regions of a vast cavern. The images were taken over an eight-year span by the U.S. National Optical Astronomy Observatory's Blanco 4-meter telescope at the CTIO.

By Carnegie Institution for Science, Washington, D.C.

Date: February 15, 2012

Eta Carinae, one of the most massive stars in our Milky Way Galaxy, unexpectedly increased in brightness in the 19th century. For 10 years in the mid-1800s, it was the second-brightest star in the sky — now it is not even in the top 100. The increase in luminosity was so great that it earned the rare title of Great Eruption. New research from a team, including Carnegie’s Jose Prieto, now at Princeton University in New Jersey, has used a “light echo” technique to demonstrate that this eruption was much different than previously thought.

Eta Carinae is a Luminous Blue Variable (LBV), meaning it has periods of dimness followed by periods of brightness. The variations in brightness of an LBV are caused by increased instability and loss of mass. The Great Eruption was an extreme and unique event in which the star, which is more than 100 times the mass of the Sun, lost several times the mass of our star. Scientists have believed that this rare type of eruption was caused by a stellar wind.

The team of scientists, led by Armin Rest of the Space Telescope Science Institute in Baltimore, Maryland, used images of Eta Carinae over eight years to study light echoes of the Great Eruption. For the first time, they observed light from the eruption that bounced, or echoed, off interstellar dust tens of light-years from the star. Those extra light-years mean that the light is reaching Earth now rather than in the 1800s when people on Earth observed the light that traveled here directly.

They then used the Magellan and du Pont telescopes at Las Campanas Observatories in Chile to obtain spectra of the echoes of light. The spectra allow them to precisely separate the light into its constituents, much like a drop of rain naturally acts as a prism and separates sunlight into the colors of the rainbow. These observations give important information about the chemical composition, temperature, and velocity of the material ejected during the 19th century Great Eruption.

Most surprisingly, their observations show that the Great Eruption is different from “supernova impostors,” events in nearby galaxies that are thought to be eruptions from LBVs. For example, the Great Eruption was significantly cooler than allowed by simple stellar-wind models used to explain supernova impostors.

“This star’s Giant Eruption has been considered a prototype for all supernova imposters in external galaxies,” Prieto said. “But this research indicates that it is actually a rather unique event.”

Scientists still don’t know what phenomenon caused Eta Carinae to erupt and lose such a quantity of mass without being destroyed. Further research is necessary to determine whether other proposed models could have triggered this activity instead.

Saturday, February 11, 2012

Venus is spinning slower than before


Figure : Venus Express
Research done By ESA, Noordwijk, Netherlands

Published: February 10, 2012

The European Space Agency’s (ESA) Venus Express spacecraft has discovered that our cloud-covered neighbor spins a little slower than previously measured. Peering through the dense atmosphere in the infrared, the orbiter found surface features were not quite where they should be.

Using the VIRTIS instrument at infrared wavelengths to penetrate the thick cloud cover, scientists studied surface features and discovered that some were displaced by up to 12 miles (20 kilometers) from where they should be given the accepted rotation rate as measured by NASA’s Magellan orbiter in the early 1990s.

These detailed measurements from orbit are helping scientists determine whether Venus has a solid or liquid core, which will help our understanding of the planet’s creation and how it evolved.

If Venus has a solid core, its mass must be more concentrated towards the center. In this case, the planet’s rotation would react less to external forces.

The most important of those forces is due to the dense atmosphere — more than 90 times the pressure of Earth’s, and high-speed weather systems, which are believed to change the planet’s rotation rate through friction with the surface.

Earth experiences a similar effect, where it is largely caused by wind and tides. The length of an Earth day can change by roughly a millisecond, and it depends seasonally upon wind patterns and temperatures over the course of a year.

In the 1980s and 1990s, the Venera and Magellan orbiters made radar maps of the surface of Venus, long shrouded in mystery as well as a dense, crushing, and poisonous atmosphere. These maps gave us our first detailed global view of this unique and hostile world.

Over its four-year mission, Magellan was able to watch features rotate under the spacecraft, allowing scientists to determine the length of the day on Venus as being equal to 243.0185 Earth days.

However, surface features seen by Venus Express some 16 years later could only be lined up with those observed by Magellan if the length of the Venus day is on average 6.5 minutes longer than Magellan measured.

This also agrees with the most recent long-duration radar measurements from Earth.

“When the two maps did not align, I first thought there was a mistake in my calculations as Magellan measured the value very accurately, but we have checked every possible error we could think of,” said Nils Müller from the DLR German Aerospace Center.

Scientists, including Özgur Karatekin from the Royal Observatory of Belgium, looked at the possibility of short-term random variations in the length of a Venus day, but concluded these should average themselves out over longer timescales.

On the other hand, other recent atmospheric models have shown that the planet could have weather cycles stretching over decades, which could lead to equally long-term changes in the rotation period. Other effects could also be at work, including exchanges of angular momentum between Venus and Earth when the two planets are relatively close to each other.

“An accurate value for Venus’ rotation rate will help in planning future missions because precise information will be needed to select potential landing sites,” said Håkan Svedhem from ESA.

While further study is needed, it’s clear that Venus Express is penetrating far deeper into the mysteries of this enigmatic planet then anyone dreamed.

Sunday, January 15, 2012

Latest computer model explains lakes and storms on Titan



Figure: Titan is covered in a thick atmosphere with abundant methane. Credit: NASA/JPL/Space Science Institute

By California Institute of Technology, Pasadena

Published: January 5, 2012

Saturn’s largest moon, Titan, is an intriguing alien world that’s covered in a thick atmosphere abundant with methane. With an average surface temperature of a brisk –300° Fahrenheit (–185° Celsius) and a diameter just less than half of Earth’s, Titan boasts methane clouds and fog as well as rainstorms and plentiful lakes of liquid methane. It’s the only place in the solar system, other than Earth, that has large bodies of liquid on its surface.

The origins of many of these features, however, remain puzzling to scientists. Now, researchers at the California Institute of Technology (Caltech) have developed a computer model of Titan’s atmosphere and methane cycle that, for the first time, explains many of these phenomena in a relatively simple and coherent way.

In particular, the new model explains three baffling observations of Titan. One oddity was discovered in 2009 when researchers found that Titan’s methane lakes tend to cluster around its poles, and noted that there are more lakes in the northern hemisphere than in the south.

Secondly, the areas at low latitudes near Titan’s equator are known to be dry, lacking lakes and regular precipitation. But when the Huygens probe landed on Titan in 2005, it saw channels carved out by flowing liquid, possibly runoff from rain. And in 2009, Caltech researchers discovered raging storms that may have brought rain to this supposedly dry region.

Finally, scientists uncovered a third mystery when they noticed that clouds observed over the past decade — during summer in Titan’s southern hemisphere — cluster around southern middle and high latitudes.

Scientists have proposed various ideas to explain these features, but their models either can’t account for all of the observations, or do so by requiring exotic processes such as cryogenic volcanoes that spew methane vapor to form clouds. The Caltech researchers say their new computer model, on the other hand, can explain all these observations and does so using relatively straightforward and fundamental principles of atmospheric circulation.

“We have a unified explanation for many of the observed features,” said Tapio Schneider from Caltech. “It doesn’t require cryovolcanoes or anything esoteric.”

Schneider said the team’s simulations were able to reproduce the distribution of clouds that’s been observed, which was not the case with previous models. The new model also produces the right distribution of lakes. Methane tends to collect in lakes around the poles because the sunlight there is weaker on average, he said. Energy from the Sun normally evaporates liquid methane on the surface, but since there’s generally less sunlight at the poles, it’s easier for liquid methane there to accumulate into lakes.

But then why are there more lakes in the northern hemisphere? Schneider points out that Saturn’s slightly elongated orbit means that Titan is farther from the Sun when it’s summer in the northern hemisphere. Kepler’s second law says that a planet orbits more slowly the farther it is from the Sun, which means that Titan spends more time at the far end of its elliptical orbit, when it’s summer in the north. As a result, the northern summer is longer than the southern summer. And since summer is the rainy season in Titan’s polar regions, the rainy season is longer in the north. Although the summer rains in the southern hemisphere are more intense — triggered by stronger sunlight because Titan is closer to the Sun during southern summer — there’s more rain over the course of a year in the north, filling more lakes.

In general, however, Titan’s weather is bland, and the regions near the equator are particularly dull, the researchers say. Years can go by without a drop of rain, leaving the lower latitudes of Titan parched. It was a surprise, then, when the Huygens probe saw evidence of rain runoff in the terrain. That surprise only increased in 2009 when Schaller, Brown, Schneider, and Henry Roe discovered storms in this same, supposedly rainless, area.

No one really understood how those storms arose, and previous models failed to generate anything more than a drizzle. But the new model was able to produce intense downpours during Titan’s vernal and autumnal equinoxes — enough liquid to carve out the type of channels that Huygens found. With the model, the researchers can now explain the storms. “It rains very rarely at low latitudes,” Schneider said. “But when it rains, it pours.”

The new model differs from previous ones in that it’s 3-D and simulates Titan’s atmosphere for 135 Titan years — equivalent to 3,000 years on Earth — so that it reaches a steady state. The model also couples the atmosphere to a methane reservoir on the surface, simulating how methane is transported throughout the moon.

The model successfully reproduces what scientists have already seen on Titan, but perhaps what’s most exciting, Schneider said, is that it also can predict what scientists will see in the next few years. For instance, based on the simulations, the researchers predict that the changing seasons will cause the lake levels in the north to rise over the next 15 years. They also predict that clouds will form around the north pole in the next two years. Making testable predictions is “a rare and beautiful opportunity in the planetary sciences,” Schneider said. “In a few years, we’ll know how right or wrong they are.”

“This is just the beginning,” he adds. “We now have a tool to do new science with, and there’s a lot we can do and will do.”

El Gordo : largest galaxy cluster in early universe


Figure: Composite image of the El Gordo galaxy cluster. An exceptional galaxy cluster, the largest seen in the distant universe, has been found using NASA’s Chandra X-ray Observatory and the Atacama Cosmology Telescope (ACT) in Chile. Credit: X-ray: NASA/CXC/Rutgers/J. Hughes et al; Optical: ESO/VLT & SOAR/Rutgers/F. Menanteau; IR: NASA/JPL/Rutgers/F. Menanteau

By Chandra X-ray Center, Cambridge, Massachusetts

Published: January 10, 2012

Officially known as ACT-CL J0102-4915, the galaxy cluster has been nicknamed “El Gordo” (“the big one” or “the fat one” in Spanish) by the researchers who discovered it. The name, in a nod to the Chilean connection, describes just one of the remarkable qualities of the cluster, which is located more than 7 billion light-years from Earth. This large distance means that it is being observed at a young age.

“This cluster is the most massive, the hottest, and gives off the most X-rays of any known cluster at this distance or beyond,” said Felipe Menanteau from Rutgers University in New Brunswick, New Jersey.

Galaxy clusters, the largest objects in the universe that are held together by gravity, form through the merger of smaller groups or sub-clusters of galaxies. Because the formation process depends on the amount of dark matter and dark energy in the universe, clusters can be used to study these mysterious phenomena.

Dark matter is material that can be inferred to exist through its gravitational effects, but it does not emit and absorb detectable amounts of light. Dark energy is a hypothetical form of energy that permeates all space and exerts a negative pressure that causes the universe to expand at an ever-increasing rate.

“Gigantic galaxy clusters like this are just what we were aiming to find,” said Jack Hughes, also from Rutgers. “We want to see if we understand how these extreme objects form using the best models of cosmology that are currently available.”

Although a cluster of El Gordo’s size and distance is extremely rare, it is likely that its formation can be understood in terms of the standard Big Bang model of cosmology. In this model, the universe is composed predominantly of dark matter and dark energy and began with the Big Bang about 13.7 billion years ago.

The team of scientists found El Gordo using ACT thanks to the Sunyaev-Zel’dovich effect. In this phenomenon, photons in the cosmic microwave background interact with electrons in the hot gas that pervades these enormous galaxy clusters. The photons acquire energy from this interaction, which distorts the signal from the microwave background in the direction of the clusters. The magnitude of this distortion depends on the density and temperature of the hot electrons and the physical size of the cluster.

X-ray data from Chandra and the European Southern Observatory’s Very Large Telescope, an 8-meter optical observatory in Chile, show that El Gordo is, in fact, the site of two galaxy clusters running into one another at several million miles per hour. This and other characteristics make El Gordo akin to the well-known object called the Bullet Cluster, which is located almost 4 billion light-years closer to Earth.

As with the Bullet Cluster, there is evidence that normal matter, mainly composed of hot, X-ray bright gas, has been wrenched apart from the dark matter in El Gordo. The hot gas in each cluster was slowed down by the collision, but the dark matter was not.

According to 'Felipe Menanteau' of Rutgers University who led the study says, "This cluster is the most massive, the hottest, and gives off the most X-rays of any known cluster at this distance or beyond."

Based on European Southern Observatory's Very Large Telescope and Chandra X-ray Observatory findings, El Gordo is composed of two separate galaxy subclusters , colliding at several million kilometers per hour. Their observation based on X-ray data and other characteristics suggests that, 'El Gordo' most probably formed like Bullet Cluster and make akin to the Bullet Cluster, located 4 billion light years to Earth. According to 'Cristobal Sifon' from Pontifical Catholic University of Chile says, "This is the first time we've found a system like the Bullet Cluster at such a large distance."

“This is the first time we’ve found a system like the Bullet Cluster at such a large distance,” said Cristobal Sifon from Pontificia Universidad de Catolica de Chile (PUC) in Santiago. “It’s like the expression says: If you want to understand where you’re going, you have to know where you’ve been.”

The Astrophysical Journal has accepted the results for publication and will announce its findings and results on 'El Gordo' at its 219th meeting in Austin of Texas.