Wednesday, November 17, 2010

Chandra finds most immature nearby black hole


This composite image shows a supernova within the galaxy M100 that may contain the youngest known black hole in our cosmic neighborhood. In this image, Chandra's X-rays are colored gold, while optical data from ESO's Very Large Telescope are shown in yellow-white and blue, and infrared data from Spitzer are red. The location of the supernova, known as SN 1979C, is in the circle.

By NASA Headquarters, Washington, D.C.
Published: November 15, 2010

This black hole could help scientists better understand how massive stars explode, which ones leave behind black holes or neutron stars, and the number of black holes in our galaxy and others.Astronomers using NASA's Chandra X-ray Observatory have found evidence of the youngest black hole known to exist in our cosmic neighborhood. The 30-year-old black hole provides a unique opportunity to watch this type of object develop from infancy.The 30-year-old object is a remnant of SN 1979C, a supernova in the galaxy M100, which is approximately 50 million light-years from Earth. Data from Chandra, NASA's Swift satellite, the European Space Agency's XMM-Newton, and the German ROSAT observatory revealed a bright source of X-rays that has remained steady during observation from 1995 to 2007. This suggests the object is a black hole being fed either by material falling into it from the supernova or a binary companion.

"If our interpretation is correct, this is the nearest example where the birth of a black hole has been observed," said Daniel Patnaude from the Harvard-Smithsonian Center for Astrophysics in Cambridge, Massachusetts.

The scientists think SN 1979C, first discovered by an amateur astronomer in 1979, formed when a star about 20 times more massive than the Sun collapsed. Many new black holes in the distant universe previously have been detected in the form of gamma-ray bursts (GRBs).

However, SN 1979C is different because it is much closer and belongs to a class of supernovae unlikely to be associated with a GRB. Theory predicts most black holes in the universe should form when the core of a star collapses and a GRB is not produced.

"This may be the first time the common way of making a black hole has been observed," said Abraham Loeb, also of the Harvard-Smithsonian Center for Astrophysics. "However, it is very difficult to detect this type of black hole birth because decades of X-ray observations are needed to make the case."



X-ray Image of SN 1979C
Photo by NASA/CXC/SAO/D.

The idea of a black hole with an observed age of only about 30 years is consistent with recent theoretical work. In 2005, scientists presented a theory that a jet from a black hole that was unable to penetrate the hydrogen envelope of the star to form a GRB powered the bright optical light of this supernova. The results seen in the observations of SN 1979C fit this theory very well.

Although the evidence points to a newly formed black hole in SN 1979C, another intriguing possibility is that a young, rapidly spinning neutron star with a powerful wind of high-energy particles could be responsible for the X-ray emission. This would make the object in SN 1979C the youngest and brightest example of such a "pulsar wind nebula" and the youngest known neutron star. The Crab pulsar, the best-known example of a bright pulsar wind nebula, is about 950 years old.

"It's very rewarding to see how the commitment of some of the most advanced telescopes in space, like Chandra, can help complete the story," said Jon Morse from NASA's Science Mission Directorate.

Sunday, November 14, 2010

Detailed dark matter map yields clues to galaxy cluster growth


This NASA Hubble Space Telescope image shows the distribution of dark matter in the center of the giant galaxy cluster Abell 1689, containing about 1,000 galaxies and trillions of stars.

By STScl, Baltimore, Maryland
Published: November 12, 2010


Astronomers using NASA's Hubble Space Telescope took advantage of a giant cosmic magnifying glass to create one of the sharpest and most detailed maps of dark matter in the universe. Dark matter is an invisible and unknown substance that makes up the bulk of the universe's mass.

The new dark matter observations may yield new insights into the role of dark energy in the universe's early formative years. The result suggests that galaxy clusters may have formed earlier than expected, before the push of dark energy inhibited their growth. A mysterious property of space, dark energy fights against the gravitational pull of dark matter. Dark energy pushes galaxies apart from one another by stretching the space between them, thereby suppressing the formation of giant structures called galaxy clusters. One way astronomers can probe this primeval tug-of-war is through mapping the distribution of dark matter in clusters.

A team led by Dan Coe from NASA's Jet Propulsion Laboratory in Pasadena, California, used Hubble's Advanced Camera for Surveys to chart the invisible matter in the massive galaxy cluster Abell 1689, located 2.2 billion light-years away. The cluster's gravity, the majority of which comes from dark matter, acts like a cosmic magnifying glass, bending and amplifying the light from distant galaxies behind it. This effect, called gravitational lensing, produces multiple, warped, and greatly magnified images of those galaxies, like the view in a funhouse mirror. By studying the distorted images, astronomers estimated the amount of dark matter within the cluster. If the cluster's gravity only came from the visible galaxies, the lensing distortions would be much weaker.

Based on their higher-resolution mass map, Coe and his collaborators confirmed previous results showing that the core of Abell 1689 is much denser in dark matter than expected for a cluster of its size, based on computer simulations of structure growth. Abell 1689 joins a handful of other well-studied clusters found to have similarly dense cores. The finding is surprising because the push of dark energy early in the universe's history would have stunted the growth of all galaxy clusters.

"Galaxy clusters, therefore, would had to have started forming billions of years earlier in order to build up to the numbers we see today," Coe said. "At earlier times, the universe was smaller and more densely packed with dark matter. Abell 1689 appears to have been well fed at birth by the dense matter surrounding it in the early universe. The cluster has carried this bulk with it through its adult life to appear as we observe it today."

Mapping the Invisible

Abell 1689 is among the most powerful gravitational lensing clusters ever observed. Coe's observations, combined with previous studies, yielded 135 multiple images of 42 background galaxies.

"The lensed images are like a big puzzle," Coe says. "Here we have figured out, for the first time, a way to arrange the mass of Abell 1689 such that it lenses all of these background galaxies to their observed positions." Coe used this information to produce a higher-resolution map of the cluster's dark matter distribution than was possible before.

Coe teamed with mathematician Edward Fuselier, who, at the time, was at the United States Military Academy at West Point, to devise a new technique to calculate the new map. "Thanks, in large part, to Eddie's contributions, we have finally 'cracked the code' of gravitational lensing,” said Coe. “Other methods are based on making a series of guesses as to what the mass map is, and then astronomers find the one that best fits the data. Using our method, we can obtain directly from the data a mass map that gives a perfect fit."

Astronomers are planning to study more clusters to confirm the possible influence of dark energy. A major Hubble program that will analyze dark matter in gigantic galaxy clusters is the Cluster Lensing and Supernova survey with Hubble (CLASH). In this survey, the telescope will study 25 clusters for a total of one month over the next 3 years. The CLASH clusters were selected because of their strong X-ray emission, indicating they contain large quantities of hot gas. This abundance means the clusters are extremely massive. By observing these clusters, astronomers will map the dark matter distributions and look for more conclusive evidence of early cluster formation, and possibly early dark energy.

When Galaxies Collide!


NGC 2623: Galaxy Merger from Hubble
Credit: NASA, ESA and A. Evans (Stony Brook).

Where do stars form when galaxies collide? To help find out, astronomers imaged the nearby galaxy merger NGC 2623 in high resolution with the Hubble Space Telescope in 2007. Analysis of this Hubble image and images of NGC 2623 in infrared light by the Spitzer Space Telescope, in X-ray light by XMM-Newton, and in ultraviolet light by GALEX, indicate that two originally spiral galaxies appear now to be greatly convolved and that their cores have unified into one active galactic nucleus (AGN). Star formation continues around this core near the above image center, along the stretched out tidal tails visible on either side, and perhaps surprisingly, in an off-nuclear region on the upper left where clusters of bright blue stars appear. Galaxy collisions can take hundreds of millions of years and take several gravitationally destructive passes. NGC 2623, also known as Arp 243, spans about 50,000 light years and lies about 250 million light years away toward the constellation of the Crab (Cancer). Reconstructing the original galaxies and how galaxy mergers happen is often challenging, sometimes impossible, but generally important to understanding how our universe evolved.

Date:14th November,2010

Galaxy mergers can occur when two (or more) galaxies collide. They are the most violent type of galaxy interaction. Although galaxy mergers do not involve stars or star systems actually colliding, due to the vast distances between stars in most circumstances, the gravitational interactions between galaxies and the friction between the gas and dust have major effects on the galaxies involved. The exact effects of such mergers depend on a wide variety of parameters such as collision angles, speeds, and relative size/composition, and are currently an extremely active area of research. There are some generally accepted results, however:

1. When one of the galaxies is significantly larger than the other, the larger will often "eat" the smaller, absorbing most of its gas and stars with little other major effect on the larger galaxy. Our home galaxy, the Milky Way, is thought to be currently absorbing smaller galaxies in this fashion, such as the Canis Major Dwarf Galaxy, and possibly the Magellanic Clouds. The Virgo Stellar Stream is thought to be the remains of a dwarf galaxy that has been mostly merged with the Milky Way.

2. If two spiral galaxies that are approximately the same size collide at appropriate angles and speeds, they will likely merge in a fashion that drives away much of the dust and gas through a variety of feedback mechanisms that often include a stage in which there are active galactic nuclei. This is thought to be the driving force behind many quasars. The end result is an elliptical galaxy, and many astronomers hypothesize that this is the primary mechanism that creates ellipticals.

Note that the Milky Way and the Andromeda Galaxy will probably collide in about 4.5 billion years. If these galaxies merged, the result would quite possibly be an elliptical galaxy as described above.

One of the largest galaxy mergers ever observed consisted of four elliptical galaxies in the cluster CL0958+4702. It may form one of the largest galaxies in the Universe.

Galaxy mergers can be simulated in computers, to learn more about galaxy formation. Galaxy pairs initially of any morphological type can be followed, taking into account all gravitational forces, and also the hydrodynamics and dissipation of the interstellar gas, the star formation out of the gas, and the energy and mass released back in the interstellar medium by supernovae.

Determining 500th Exoplanet Will Be a Tricky Job


2MASS J044144 is a brown dwarf with a companion about 5-10 times the mass of Jupiter. It is not clear whether this companion object is a sub-brown dwarf or a planet.
Provided By: Space.com
Date: 14th November,2010


The number of planets that astronomers have discovered orbiting distant stars hovers right below 500. But confirming which remote flicker of light is the milestone alien world will be a tricky affair.At NASA's last count, astronomers had confirmed the discovery of 496 planets around alien suns. There are signs of dozens more, if not hundreds, but it will take time to weed out which of the detections are actual worlds and which are merely false alarms.Some astronomers now expect that official discovery of the 500th alien planet by January 2011.In the meantime, scientists lean on telescopes and space observatories, as well as a tried-and-true bag of tricks, for identifying and confirming planets beyond our own solar system.There are four primary techniques currently used to find exoplanets, each with its own pitfalls.The radial velocity method looks for repeated wobbles in a star's movements that are signs of a planet's gravitational pull yanking it back and forth.

However, if a planet has very little mass, it hardly exerts much of a pull — if an astronomer is trying to detect something like an Earth-size planet, the noise or static in the data can be mistaken for a planet. Overcoming this problem largely requires measuring the star over and over and over again, said astrobiologist Alan Boss at Carnegie Institution of Washington."That can take a lot of telescope time, which can be very, very expensive," said planetary scientist Sara Seager at the Massachusetts Institute of Technology. "One night of time at the Keck telescope can cost $50,000."The transit method looks for dips in a star's brightness whenever a planet crosses in front of it. The problem is that if the star under observation is in mutual orbit with another star, it's that other star that could lead to regular dips and surges in brightness.

Another technique, called the microlensing method, looks for distortions in light resulting from the pull of gravity. The gravitational field of a planet can have a measurable effect on light that passes by it.However, this occurs only when a star with a planet happens to line up with another star — a brief event that never happens again, "like two ships passing in the night," explained astronomer Geoffrey Marcy at the University of California at Berkeley.The difficulty in reproducing results can make microlensing hard to rely on, although there have been solid examples of microlensing that overcame any doubts.Astronomers also may directly image the light from an exoplanet. "The down side there is, how do you know if that candidate is a planet or a faint star?" Marcy said. "Faint stars look a lot like glowing planets."

What makes a planet?


There is no exoplanet list formally sanctioned by the International Astronomical Union, the body that assigns official designations to celestial bodies.Instead, there are only unofficial lists maintained by researchers in the field, such as astrobiologist Jean Schneider at the Paris-Meudon Observatory and astronomer Jason Wright of the University of California in Berkeley.There are also no hard and fast rules as to whether a candidate should be declared an exoplanet; each researcher and group has its own preferences, Schneider said. To get others to accept their results, scientists often wait until the probability that their results are false alarms falls below 1 percent or so.The standard way that the field confirms the report of a planet is through its acceptance by knowledgeable referees into a scientific journal. Still, as many as 50 to 100 exoplanets were revealed in talks, only to wait years before their appearance in a journal. The discoverers may simply have been too busy doing actual work to write up the papers, Schneider explained.

False alarms:
In addition, even after publication, a few exoplanets have been retracted as false alarms — "five to 10 since 1989," Schneider estimated."My research group publishes data on an exoplanet when the false alarm probability drops below 1 percent, which means about 1 percent will be wrong," Marcy said. "There's always a chance to be wrong, and as scientists we try to calculate what that probability is and present it openly." "There's always a chance there's a few errors in data to make something look like a planet," he added. "This can happen to anyone — just one of those things that happens when you're pushing a frontier, pushing instruments to their bitter limits. This kind of astronomy is hard work, and there are lots of ways to make a mistake. A number might slip through, but they're generally corrected in a year or two."

Another possible point of confusion is the fuzzy boundary that separates a planet from a "brown dwarf" — a large gaseous body, more than 13 times the mass of Jupiter, that failed to become a star. "Something 20 Jupiter masses and below is likely a planet, but there's ambiguity there," Schneider said.All these concerns might give the impression of a list of published exoplanet being a bit of a mess, but overall, Schneider contended, only 1 or 2 percent of these discoveries are unclear so far."The real acid test in the field is getting two methods to detect an object — for instance, a radial velocity signature plus a transit detection," Boss said. "There are about 100 of such absolutely, positively identified planets so far."

Exoplanet overdrive

In the end, "there is no real honor roll of planets, no real way to say which the 500th planet will be," Boss said.Still, while it has taken scientists roughly 15 years to confirm the detection of the nearly 500 planets known so far, the pace promises to grow rapidly.NASA's Kepler mission, a space observatory surveying a large sample of stars as it orbits the sun, revealed in June that it had detected more than 750 possible exoplanets using the transit method within its first 43 days of operation."Kepler is beating us all by a million miles," Marcy said.Many of the candidates Kepler discovered are now getting verified with radial velocity confirmations. "On Feb. 1, we'll announce all of them — a huge avalanche of exoplanet candidates," Marcy said."The days of having to have perfect exoplanets are going away," Seager noted. "We're going to publish so many planets that we're not going to be able to validate all of them. Instead, we'll have so many we can start studying them statistically in groups."Even without Kepler, there are roughly 100 exoplanet candidates that researchers are working hard to confirm, Marcy said."We could well hit 500 on Jean Schneider's list by January," Boss said.

Intracluster medium


Comparison of the Chandra image of the X-ray emission from the intracluster medium in the core of the Abell 2199 galaxy cluster against the optical emission of the galaxies (from the DSS)

Date: 14th November 2010

In astronomy, the intracluster medium (or ICM) is the superheated plasma present at the center of a galaxy cluster. This is gas heated to temperatures of between roughly 10 and 100 megakelvins and consisting mainly of ionised hydrogen and helium, containing most of the baryonic material in the cluster. The ICM strongly emits X-ray radiation.The ICM is heated to high temperatures by the gravitational energy released by the formation of the cluster from smaller structures. Kinetic energy gained from the gravitational field is converted to thermal energy by shocks. The high temperature ensures that the elements present in the ICM are ionised. Light elements in the ICM have all the electrons removed from their nuclei.

The ICM is composed primarily of ordinary baryons (mainly ionised hydrogen and helium). This plasma is enriched with heavy elements, such as iron. The amount of heavy elements relative to hydrogen (known as metallicity in astronomy) is roughly a third of the value in the sun. Most of the baryons in the cluster (80-95%) reside in the ICM, rather than in the luminous matter, such as galaxies and stars. However, most of the mass in a galaxy cluster consists of dark matter.

Although the ICM on the whole contains the bulk of a cluster's baryons, it is not very dense, with typical values of 10^-3 particles per cubic centimeter. The mean free path of the particles is roughly 10^16 m, or about one lightyear.

The strong gravitational field of clusters means that they can retain even elements created in high-energy supernovae. Studying the composition of the ICM at varying redshift (which results in looking at different points back in time) can therefore give a record of element production in the universe if they are typical.

As the ICM is so hot, it mostly emits X-ray radiation by the bremsstrahlung process and X-ray emission lines from the heavy elements. These X-rays can be observed using an X-ray telescope. Depending on the telescope, maps of the ICM can be made (the X-ray emission is proportional to the density of the ICM squared), and X-ray spectra can be obtained. The brightness of the X-rays tells us about the density of the gas. The spectra allow temperature and metallicity of the ICM to be measured.

The density of the ICM rises towards the centre of the cluster with a strong peak. In addition, the temperature of the ICM typically drops to 1/2 or 1/3 of the outer value in the central regions. The metallicity rises from the outer region towards the centre. In some clusters (e.g. the Centaurus cluster) the metallicity of the gas can rise above that of the sun.As the ICM in the core of many galaxy clusters is dense, it emits a lot of X-ray radiation (the emission is proportional to the density-squared). In the absence of heating, the ICM should be cooling. As it cools, hotter gas will flow in to replace it. This is known as a cooling flow. The cooling flow problem is the lack of evidence of cooling of the ICM.

Mark III (new space suit from NASA)


Provided By: NASA
Date:sunday,November 14th, 2010


The Mark III or MK III (H-1) is a NASA space suit technology demonstrator built by ILC Dover. While heavier than other suits (at 59 kilograms (130 lb), with a 15 kilograms (33 lb) Primary Life Support System backpack), the Mark III is more mobile, and is designed for a relatively high operating pressure.

The Mark III is a rear-entry suit, unlike the EMU currently in use, which is a waist-entry suit. The suit incorporates a mix of hard and soft suit components, including hard upper torso, hard lower torso and hip elements made of graphite/epoxy composite, bearings at the shoulder, upper arm, hip, waist, and ankle, and soft fabric joints at the elbow, knee, and ankle.

The 8.3 pounds per square inch (57 kPa) operating pressure of the Mark III makes it a "zero-prebreathe" suit, meaning that astronauts would be able to transition directly from a one atmosphere, mixed-gas space station environment, such as that on the International Space Station, to the suit, without risk of the bends, which can occur with rapid depressurization from an atmosphere containing nitrogen or another inert gas. Currently, astronauts must spend several hours in a reduced pressure, pure oxygen environment before EVA to avoid these risks.

The Mark III, as well as ILC's I-Suit, has been involved in field testing during NASA's annual Desert Research and Technology Studies (D-RATS) field trials, during which suit occupants interact with one another, and with rovers and other equipment.

Subjects wearing the Mark III were able to kneel to pick up objects, a task which would be difficult in either the Apollo A7L or Shuttle EMU suit. Dean Eppler, a geologist at NASA's Johnson Space Center who wore the suit during testing, commented that "the Mark III in many cases has almost shirtsleeve-equivalent mobility." Eppler has spent more than 100 hours in the Mark III.

Despite the success of zero- and partial-gravity testing on the KC-135 Vomit Comet, the EVA Project Office at Johnson Space Center is currently looking toward a soft suit design for future astronauts.

Thursday, November 11, 2010

Giant structure in our galaxy


By NASA Headquarters, Washington, D.C.
Published: November 10, 2010

NASA's Fermi Gamma-ray Space Telescope has unveiled a previously unseen structure centered in the Milky Way. The feature spans 50,000 light-years, and it may be the remnant of an eruption from a super-sized black hole at the center of our galaxy.

"What we see are two gamma-ray-emitting bubbles that extend 25,000 light-years north and south of the galactic center," said Doug Finkbeiner from the Harvard-Smithsonian Center for Astrophysics in Cambridge, Massachusetts, who first recognized the feature. "We don't fully understand their nature or origin."

The structure spans more than half of the visible sky, from the constellation Virgo to the constellation Grus, and it may be millions of years old.

Finkbeiner, along with Meng Su and Tracy Slatyer, both from Harvard, discovered the bubbles by processing publicly available data from Fermi's Large Area Telescope (LAT). The LAT is the most sensitive and highest-resolution gamma-ray detector ever launched. Gamma rays are the highest energy form of light.

Other astronomers studying gamma rays hadn't detected the bubbles partly because of a fog of gamma rays that appears throughout the sky. The fog happens when particles moving near the speed of light interact with light and interstellar gas in the Milky Way. The LAT team constantly refines models to uncover new gamma-ray sources obscured by this diffuse emission. By using various estimates of the fog, Finkbeiner and his colleagues were able to isolate it from the LAT data and unveil the giant bubbles.

Scientists now are conducting more analyses to better understand how the never-before-seen structure was formed. The bubble emissions are much more energetic than the gamma-ray fog seen elsewhere in the Milky Way. The bubbles also appear to have well-defined edges. The structure's shape and emissions suggest it was formed as a result of a large and relatively rapid energy release — the source of which remains a mystery.

One possibility includes a particle jet from the supermassive black hole at the galactic center. In many other galaxies, astronomers see fast particle jets powered by matter falling toward a central black hole. While there is no evidence the Milky Way's black hole has such a jet today, it may have had one in the past. The bubbles also may have formed as a result of gas outflows from a burst of star formation, perhaps the one that produced many massive star clusters in the Milky Way's center several million years ago.

"In other galaxies, we see that starbursts can drive enormous gas outflows," said David Spergel from Princeton University in New Jersey. "Whatever the energy source behind these huge bubbles may be, it is connected to many deep questions in astrophysics."

Hints of the bubbles appear in earlier spacecraft data. X-ray observations from the German-led Roentgen Satellite suggested subtle evidence for bubble edges close to the galactic center or in the same orientation as the Milky Way. NASA's Wilkinson Microwave Anisotropy Probe detected an excess of radio signals at the position of the gamma-ray bubbles.

The Fermi LAT team also revealed the instrument's best picture of the gamma-ray sky, the result of 2 years of data collection.

"Fermi scans the entire sky every 3 hours, and as the mission continues and our exposure deepens, we see the extreme universe in progressively greater detail," said Julie McEnery from NASA's Goddard Space Flight Center in Greenbelt, Maryland. NASA's Fermi is an astrophysics and particle physics partnership, developed in collaboration with the U.S. Department of Energy, with important contributions from academic institutions and partners in France, Germany, Italy, Japan, Sweden, and the United States.

"Since its launch in June 2008, Fermi repeatedly has proven itself to be a frontier facility, giving us new insights ranging from the nature of space-time to the first observations of a gamma-ray nova," said Jon Morse from NASA Headquarters, Washington, D.C. "These latest discoveries continue to demonstrate Fermi's outstanding performance."

NASA's Next Big Space Telescope to Cost an Extra $1.5 Billion



During cryogenic testing, the mirrors will be subjected to temperatures dipping to -415 degrees Fahrenheit, permitting engineers to measure in extreme detail how the shape of each mirror changes as it cools. Credit: NASA/MSFC/David Higginbotham/Emmett Given

source:space.com
11th November,2010.


WASHINGTON — NASA's James Webb Space Telescope (JWST) is expected to cost at least $1.5 billion more than current estimates and its launch will be delayed a minimum of 15 months, according to an independent review panel tapped to investigate escalating costs and management issues with the next-generation flagship astronomy mission.

U.S. Sen. Barbara Mikulski (D-Md.) called for the independent review in June to identify the root causes of cost growth and schedule delays on the JWST.

"The Webb telescope will now cost $6.5 billion, $1.5 billion more than the estimate included in NASA's February 2010 budget request, Mikulski wrote in a Nov. 10 letter to NASA Administrator Charles Bolden after reading the Oct. 29 report. "Its launch will be delayed by over a year, from June 2014 to September 2015."
Led by NASA's Goddard Space Flight Center in Greenbelt, Md., the James Webb Space Telescope is an infrared telescope with a 6.5-meter foldable mirror and a deployable sunshield the size of a tennis court. Northrop Grumman Aerospace Systems of Redondo Beach, Calif., is prime contractor. An Ariane 5 rocket provided by the European Space Agency is slated to launch the observatory to the second Lagrange point — a gravitationally stable spot 1.5 million kilometers from Earth.

In her letter, Mikulski said NASA must have a sense of urgency and frugality in correcting the JWST's management problems and present Congress with a realistic budget for the program.

"We cannot afford to continue with business as usual in this stark fiscal situation," she wrote.

The panel, led by John Casani, special assistant to the director of NASA's Jet Propulsion Laboratory in Pasadena, Calif., attributed the cost growth and schedule delays to "budgeting and program management, not technical performance," according to the report, which characterized the JWST's technical progress as "commendable and often excellent."

However, the report notes that "there may be a number of low probability threats whose occurrence could cause an additional year delay in launch and a correspondingly higher cost."

The panel recommends restructuring the JWST project office at Goddard to emphasize cost and schedule ceilings. "The flawed practice by the Project of not adequately accounting for threats in the budgeting process needs immediate correction," the report states.

However, the report also found that "the JWST Project has invested funds wisely in advancing the necessary technologies and reducing technical risk such that the funds invested to date have not been wasted," according to the executive summary. "The management approach, however, needs to change to focus on overall life cycle cost and a well-defined launch date."

Bolden, in a Nov. 10 statement, said he agrees with the panel's findings and that NASA would overhaul the program's management structure.

"No one is more concerned about the situation we find ourselves in than I am, and that is why I am reorganizing the JWST Project at Headquarters and the Goddard Space Flight Center, and assigning a new senior manager at Headquarters to lead this important effort," Bolden said in the statement.

The NASA chief said he is encouraged by the panel's finding that the JWST is technically sound and that the project continues to meet its milestones.

"However, I am disappointed we have not maintained the level of cost control we strive to achieve — something the American taxpayer deserves in all of our projects," he said. "NASA is committed to finding a sustainable path forward for the program based on realistic cost and schedule assessments."